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Multivariate Objective Analysis of Temperature and Wind Fields

I. Introduction

This paper describes the design of an objective analysis
system based upon the statistical optimum interpolation
principles of Gandin (1963). The proposed analysis system
interpolates values of meteorological variables to grid point
locations. The analysis system is multivariate in that
horizontal wind observations are used in the analysis of the
temperature field and vice versa. The thermal wind relation-
ship is used as a weak constraint. Moreover, the analysis
scheme is three-dimensional. Analysis may proceed directly
to model sigma surfaces (or any other desired analysis out-
put surface) from observations distributed in three dimensions.
Finally, the analysis scheme will make allowance for the
various error levels of the heterogeneous observational data
base in a rational and systematic way in producing the final
analysis.

Multivariate objective analysis systems for the analysis
of geopotential height and horizontal wind fields have been
developed and tested by Kluge (1970), Rutherford (1973), and
Schlatter (1975). In these systems, the geostrophic relation-
ship between heights and winds is used as a weak constraint in
performing the multivariate analyses. "First-guess" fields
are provided by forecast values, deviations of observations
from forecasts are computed, and these deviational values are
then analyzed by the multivariate optimum interpolation method.
The geostrophic assumption is invoked to relate the covariances
of wind-component and height forecast errors. Buell (1958, 1972)
has shown that the covariances of wind components and heights
are indeed related in an approximately geostrophic manner at
middle and high latitudes. The conclusion of all three investi-
gations is that the height analysis is significantly improved
by multivariate analysis including wind data as compared to
a univariate analysis using height information only. On the
other hand, Rutherford and Schlatter conclude that use of
height information in a multivariate wind analysis does not
significantly improve the wind analysis.

The analysis system proposed here is similar to those
of Rutherford and Schlatter except that temperature replaces
geopotential height as the mass variable to be analyzed
multivariately with the wind components, and the three-
dimensional thermal wind relation replaces the geostrophic
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relation between the covariances of the analyzed variables.
Although it would be possible to use cross covariances of
the variables determined from actual data samples such as
those determined by Buell, use of a dynamic relationship
has two advantages: (1) The dynamic constraint will provide
a better balancing of the mass and momentum fields as an
initial state for model integration, and (2) the covariances
can be expressed as relatively simple analytic functions
rather than needing to be stored in the form of very large
tables for computer access. Moreover, the experience of
other optimum interpolation analysts (Gandin, 1963; Schlatter,
1975) is that the precise forms of the covariance functions are
not as important as their general characteristics, and that
analytic approximations are quite suitable for the purpose
of producing a statistically optimum analysis from the
available data.

In equatorial latitudes, however, the use of the thermal
wind relation as even a weak constraint is not appropriate.
Therefore, the analysis scheme will be designed to gradually
decouple the temperature-wind interdependence as the equator
is approached, so that the analyses of temperature and wind
fields will be essentially independent of each other in the'^ Dimmediate vicinity of the equator. The degree of decoupling
as a function-of-latitude will be determined on the basis of
experimentation.

The results of Rutherford and Schlatter mentioned above
suggest that inclusion of temperature information in the wind
analyses may not significantly improve the results over those
using wind information only. However, their conclusions assume
the presence of equal amounts of temperature and wind data.
It is anticipated that for large portions of the globe, density
of temperature data will greatly exceed density of wind data;
therefore, in these regions at least, multivariate use of
temperature data in the wind analyses is indicated.

II. Theory

Let T U= -7-+I V V V, (1) 

where T, EJ, and Vr are the total values of temperature,
westerly, and southerly wind component of either an observation
or of the analyzed value at a grid point. The quantities T 

, and %r are "guess" values (provided by a forecast,
climatology, or a suitable blend of the two) at observation
or grid points, and t , u , V are deviations of the total
values from the "guess" values. Then the linear multivariate
analysis equation for the temperature T at a grid point is

*1 given by 
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7>~~~ y÷~~o~~~~t1 . -~~~ -~~~- (2)

where -7 is the "tguess'" temperature at the grid point, and
a. , , c; are weighting factors for the e temperature

observations, m u-component observations, and n v-component
observations within a specified volume about the grid point.
This volume is chosen sufficiently large so as to include
all observations having a significant weight in determining
the analyzed value at the grid point. In the absence of any
such observations, the "guess" value becomes the analyzed
value. Similar multivariate expressions may be written for

LT and f .

In general, the right-hand-side of (2) will not give
the true value of T at the grid point but will differ by
an amount called the analysis error. Since the actual true
value T7 in any given situation is unknown, it is not possible
to eliminate this source of error exactly, no matter how the
weighting factors are chosen, We can, however, stipulate that
the mean square error of equation (2)

.~~~
(- 7- 4. i Cc6.J - 5. c v, (3)

be a minimum and use this requirement to determine the values
of the weighting factors.

We now require that

aRA)QL. = o j = /, (

g/D 62 -a, J Al /. t(4)

El J C,

The result is the following set of equations:

tE to--/ t ffi I, J j e a J (5a?L= tkt = -

*The mean to be taken over a large sample of observational data.
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Z= ...... j=;A, k-- ) 

a ~ t + ,.J R k = t k - 1 k (5b)

2 V~~t- 0- 1 £.1 (5c)

The equations resulting from minimizing analysis error
associated with T or are the same except that, in the
right-hand-side term, .3 is replaced by u or V , respec-
tively. (Of course, the resulting solutions for tie weighting
coefficients a. , I , and k will be different in each case.)

The quantities t, , ', , etc., are covariances of
the deviational quantities t , u , V The values of these
covariances will, in actuality, be "inflated" by the presence
of observational errors. For now, we will consider only the
"true" component of the covariances. It is a relatively easy
matter to add on the error terms, as will be shown in a later
section.

It is convenient to express equations (5) in normalized
form. To do this, divide (5a) by i , (5b) by !-,
and (5c) by v- to get 5

AP

v ~mX

27, at; / , %26a. t> = w'-(6b)
oI -X X

-v

~ )7J ~I / AW/e AS'
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where

tt tq,)
At ~ , ~ (7)

We wil -- ur toteenraieom ntrso

correlation functions ? , rather than covariances, later.

We now proceed to evaluate the individual covariancesi
Assume that the field of temperature deviations C-6) is
homogeneous within the volume about a grid point, and that
the temperature covariance can be approximated by a simple
analytic expression. Assume additionally,. that the other
eight covariances of (5) are related to t~,through the

dthermal wind relations 
I~~~~~~~~~~~~~

. if - ) > _ R Dt ~~~~~~~~~(9a)

'P ~-

v*=aV -Ra (9b)

.~~~~ ~ .~ J

/ f .B

We will return to these normalized forms in terms of
correlation functions j~ , rather than covariances, later.

We now proceed to evaluate the individual covariances.
Assume that the field of temperature deviations (t) is
homogeneous within the volume about a grid point, and that
the temperature covariance can be approximated by a simple
analytic expression. Assume additionally,_that the other
eight covariances of (5) are related to tt. through the
thermal wind relations J

- /9 ~~~~~~~~t ~~(9a)

Then the corresponding covariances are related to L.t by

,J= .(10a)
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....... Ž. ( ... ) (lOb)

P~~~~~~

n he -oe deiae o = w t r s et o ~ have) (lbc)

---- e g J- - --l ec - -- X t ed. t J ( l O d )

rJe atis (.t (lOe)

vL~vJ* - -- --v<) y,
_ C.*,7 -R ____ ( tt) (lOf)

V:=_ R_ o ( _ __ a t) (lOg)

~~ 77 f6j ŽtpC X.3:

In the above, derivatives of f with respect to 5 have been
neglected. (See Appendix ; for proofs of the above-derivvative
relations.)
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Additionally, the following covariance relations may be
obtained from (9a, b):

L/.U:,t. = -' ( /ij- .~
- -- -;= ~ ' j ~ -

(ll1a, b)
J 3 ( -.

vat. =e Ct) t J d7 (11c, d)

*2. 2-~

£ J ~ ~ ~ ~ ~ 
(1le, f)

Integratig eqations) 1 an usn equatios(llg, h)

Tnte-grating equations Cl) and using equations (10),

(12a)
U.t .J --

AU

I0
A,
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J

- . ' (12c)
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(.12d)

S--d. ' (12e)

, C,

2¢, , (12f )
, ,

P. 1,J 

f-0 I'@

/p ·.

J ' ~ ~ ~ ~ ~ '4. V. = U. , +J. to JO

'v 6--

tv.
- C- Li

- -j

Jo j'o

(12g)
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'J
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where /o , ' refer to the surface pressure corresponding
to the Ci)th and (j)th observation locations. The covariances

ats , etc., are assumed to be negligibly small and are
neglected on the right-hand sides of (12a-d). The covariances

IL" bU. , etc., have also been neglected on the right-hand
sides of (12e-h) but with less justification. These covariances
are neglected in the following because (1) they are difficult
to incorporate into the theoretical development, and (2) the
results of the theory strongly suggest that the terms u, aUf,
etc., must indeed be small compared to the integral terms of
(12e-h). We will return to a discussion of this problem after
examining the results.

We will now assume that the deviational temperature co-
variance t.t can be approximated by an analytic expression
of the form -

t go 6,7-)t;X~j,4) C t(X,_y~xJ-)-)0-x (vtJ)-(13)

where C is the deviational temperature variance, assumed
constant within the influence volume for the analysis at a
particular grid point, but may vary as the analysis system
moves from one grid point to another. In (13), the dependence
of the covariance on the horizontal separation of a pair of
observations (or of an observation and the analysis point)
is assumed to be independent of their vertical separation and
vice versa. Substitution of (13) in (12a-h) leads to

U. e -e 1/ (14a, b).
P ~ ~ ~ J J J

f6 0 J.o
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(14c, d)

P.

6 0
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~~:; ~,.~t. V. = fId') -C£- % d.-
tI, j -- Cx a

j .o i

(14e)
P. P.
t -j

(14f)
1'j

f, ('.do tO
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(14g)
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We will deal first with the function 2 (p., I)and its
integrals. The original intention was to use the form

% 5.,.) =e"f-k (~,--P4. = e? -/ k (~/~ ) (15a)

which assumes a normal, or "Gaussian," distribution for the
deviational temperature covariance as a function of 
similar to the normal distribution assumed below (Eqn. 18)
for the horizontal function j . However, the integrals
appearing in (14a-h) can only be evaluated by numerical
quadrature if (15a) is used. Although extensive tables of
values of these integrals could be used in the computation
of the derived covariances, it is more convenient to have
expressions in closed analytic form for the integrals if
possible. The functional form

(15b)

where _ /< (/ )

closely approximates the functional form of (22a), and its
integrals have nearly the same values as those derived
from (22a). The constant kP determines the "half-width"
of the covariance distribution with respect to 6xp ; its
value will have to be determined by fitting the profile (15b)
to temperature covariances determined from real data.

Three different integrals appear in equation (14). They
are

P.

Ri 2 ~df. f)(16a)
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(16b)

Jo

S ubtu -i oF ) - J 5 (in

Substitution of Cl5b)7 in

i V- _ 4l
k Yr,-4j~~

p 'LI 01~~~~O

X _ -
Vy

/ (_- / I
"Pf j

~, . - 7 ' 7 L -I -_ 7 L 1 ~ ,07 7L I7
jL t~ 7b6 7J 0J 00 1 00

-f_ I :.t X - ?>)(, -:. 2;:) (17c)
~~ L 5 I _( / _ _ _ _ _ N144~~ I. ( / 7 )

(lia-c) leads to

(16c)

(17a)

(17b)_ 7go- A~5
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where _ I ,X) -

J~~~~~~~

k^- tpuP /'Ov Lo Aft/ t

Now we turn to the function k and its partial derivatives.
In cartesian coordinates, assume

E - { - kh [b'- XJ) (y ) } (18)

However, for the global model, we wish to express horizontal
locations in terms of longitude A and latitude ~ . Rather
than using the exact great-circle distance between two points
(which leads to very messy expressions for the derivatives of t ),
it is more convenient to use two good approximations (to within
5 percent of the '"true" distance) to the great circle distance,
one valid for low and middle latitudes, the other for polar
latitudes.

a. Lower Latitudes (-70°C < ~ < +70° )

Let .- j = coS ( ) ( .- j) (19a)

Ad ~J = A (#. -#) (19b)

where Ž is longitude, ~ is latitude, and A is the radius
of the earth, This approximation is suggested by Schlatter
(1975)1. The corresponding expression for - is then

wher ) - (20)

where Cos (/ _ >9 1) -) e (d - (21)
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With the partials of (14) reexpressed in spherical
coordinates, and using (16), (20), and (21),

(22a)
-- _ C - -- kh A -

J

V'

v.-. = - CRt P -k ~w 
___ '~1/ i

IL) f. C04 I J~

= - C.R
JJ

IF P-j A- 'I. ) a //" - 7V L ~A.~~J

u-'- = C Rt&
A f",.'2J Q./ I A- h k "-A __v , j J~~~~

U. Y.______C- v -- CR

. J J

1.A4~~~

C R -
Jl

J

h A2
(22b)

(22c)

t L~-. .-J1
(22d)

(22e)

(22f)

-,.J

A4 -f c) 
7 >z ) .3J

(22g)

t.J. -

k4A-�� -,
C)�. -� � ,

" I/
�QIY
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(22h)V.____.--__ A* f = CR
-i -A r /- 

/1 J

where the partial derivates are given by

3F,- -s (-.) 2(- (23a)--a ot . J -- --- G -) - -- C2 a

_ _ _ _ _ - =o s

9 :=-Z)S># (A,-AJ) 0C 0

1-~~~~~~2

_ % _ = _..- - 2-COS"I"

D )3 ,J

- -- _ = 2coS/ I', I) - ) =
4.) 

= -2 coS . j) = .- )j) S(+J)

where i - .+j 

2-

(23b)

(23c)

(23d)

(23e)

(23f)

(23g)

(23h)

(�(,. - ),) 5,11 (�,. I �
j 'i )
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When i = j, (13), (22e), and (22f) give the variances

= C

_6U. = V.s =
6. b

(24)

(25)
12 RC-kQ C'~

7Cj1,

Substituting (13), (22a--h), (24) and (25) in (7) yields
for the correlation functions corresponding to the covariances,

(26a)

Ut 
, -- S =. -. I A ) pj

:fg = -A k ) I
jl~ ~2 (, - V 

U ~ ~ 2~:Q~~:t. /

Vt

%.F' 1

k

_- e_- k4 A f
C , kA

_ A (L TD
CoS WEU2 

-~fV- A A kL 4aeA

':1' CosC J

LU &J2

(26b)

(26c)

(26d)

(26e)

(26f)
' ( J I J SkI

,2 (Q m)o ay h

j - - ~~~ I ~~' S - 2

-�L e- � Iq 'f
C -11

_ /-k, 'A '
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_V ! 62 -0J ._ cAy-- Ji Ji 0 (26g)

UV _ _ _ ran - ,c (26h)
fLj / (, ~ 5 L e-

__ _ _Q -: - / A 4A (26i)p . 6Q . , _ .

The convention adopted here for the correlation functions is
that the first superscript goes with the first subscript and
similarly for the second. For example, .Pt indicates the
correlation of u at the (i)th location wit-h t at the (j)th
location. This is, in general, different than j.4 , the
correlation of t at the (i)th location with u at he (j)th
location. For autocorrelation like t t there is no
difference. 

These correlation functions can be reexpressed as the
product of a"horizontal correlation function y/ and a pressure
correlation function ) . The horizontal functions are

__.../Mt 9 ,~ 8- e_4~ 4(27a)

-- (t (27b)
,t62 0 W s , _/J/
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Atif ,~ /7- D tt 

-- - - /iw,~- = - A 
(27c)

_ i = A ___ - - (27d)

C cos 6. (4 ) / a. /ti
C.

tv AAn /
c --j.

tt-

c' J . J -

(27e)

(27f)

(27g)

uV /

,2 cos sj
[) f : 4 - rD -(27h)

CL . aJ 't a , Ž j J

vt-f I-

~~/W•~~2 cos L+#sr/A -~V -
J

(27i)
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The pressure correlation functions are

/
V-. =

6f- --------- -- - k u -4R ) -- - 0- --11 - -1.
(28a)

Ij =z1, = P! ( g,.') (28b)
~~~~~~~~~~~~~ V -( b

,Zj. ,= W,t =- pJ,,/t )V. -- . /t/jj

ut4 Pv
"J,. = 2V ,

ti. t/
-.. .2)..
6U 'I

Uv
= )..

Vq
-2)..= 21 

(28c)

(28d)

where the values of c.
supplied by (17a, b, c)

, and Q. are to be

b. Polar Latitudes (I I > 700)

For polar latitudes, the horizontal correlation coefficients
must be calculated using a different approximation. In place
of (19a, b), let

(29a)X -_ -, = A (0 Cos) - - . COS J))

(29b)
-y j. -y. = A 69. S, .- J. s )

I J J

where

f > 7o0 ° (30a)

(30b)2 . 7rif 

q �j -
(Q '-C Q , ) ','/-

1 J1 I
U j

__ - 2_ _
...........- 2 .

# < -70o .. 
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is the co-latitude. The corresponding expression for
(instead of (20) and (21)) is

tL0t /6 ~, J)-ex _k A 2)(31)

where z _ 2 (32)

Proceeding as before, but in polar coordinates instead of
spherical coordinates, results in the following high-latitude.
forms for the horizontal correlation functions:

U.j. =e - : (33a)

tq
= -A jP.. (33b)

> t40 - _fl (kXN t < ft ; 0 ~~~(33c)

-vE k~~te (33d)

t~v'= A/q )~ /

_-0~~~ ~~ ~ tv At ~~ _~ ~(33e)

?v> /ffiX X 4} tt ~~~~~~~(33f)4 _hj . a. j T

v _. / ./..- ~ .. J(33g)

.. d
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-= i-- ( L _kA )(33h)
J~ ~ 2I) L)bbJ )J

J

Vex / C 1 (33i)

The pressure correlation functions (28) remain the same.

III. Results

In the following discussion, it must be kept in mind
that we are dealing with correlations between the deviations
of temperatures and wind components from "first-guess" values
(forecast or climatology or a blend), and not with correlations
between raw temperature and wind components themselves. The
various assumptions implicit in these correlations are more
acceptable when deviational quantities are used in the analysis.

Examples of the horizontal correlation functions jC.
c , etc., are shown in Figures 1 through 8. The Ci)th

observation location (or analysis point location) is indicated
by the circled point at the center of each figure and is at
30°N. The figures show the values the correlation functions
have for (j)th observation locations in the vicinity of the
(i)th point. For example, when the (j)th point is located
5° northland 5° east of the (i)th point, Figure 1 indicates
that u = 0.6, Figure 2 indicates that = -0.47,
etc. A value of k = 106 km 2 is used throughout.

It may be noted that the deviational temperature auto-
correlation function /u'., is isotropic. The rest of the
horizontal correlation functions, all derived from ,
are anisotropic. These horizontal functions are essentially
the same as those of Rutherford (1973) and Schlatter (1975),
except that theirs are for correlations between heights and
wind components.

Figures 1 through 8 may be compared with Figure 9
reproduced from Buell (1959), in which correlations between
heights and wind components on an isobaric surface are
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computed from observed-minus-climatology differences for realdata. The general agreement, after normalization, with the"horizontal" Cactually constant pressure) correlations ofFigures 1 through 8 is apparent. This indicates that the
geostrophic relationship, hence also the thermal wind relation-ship, is a valid constraint for the correlations involving
wind components in the latitudes of the United States.

Figures 10 through 12 show the shapes of the pressure
correlation functions as given by equations (28) for the (i)thpoint at 800, 500, and 200 mb, respectively. A value of k =5-is assumed in computing these profiles. The WI, curvesagree roughly with vertical temperature correlations obtainedby Rutherford (unpublished manuscript, 1974). The d -'t curvesindicate that the wind at a given level is well correlated with
the temperatures below that level but poorly correlated withtemperatures at higher levels. Conversely, the -.. curvesshow the temperatures to be highly correlated withJwinds abovebut poorly correlated with winds below. These are the expected
results when the thermal wind relationship is used.

The correlation curves (identically the same as
.. , a. , and v- ) for the wind components showmaxiAum correation witi other wind components at the samelevel, as expected. A surprising feature of these curves istheir "broadness"; the winds are indicated to correlate fairlywell at all levels for the assumed temperature autocorrelationprofile, which is quite narrow in these examples. This ispresumably a result of the integrated effect of the thermal

wind, which interrelates the winds at all levels in theatmosphere. If the terms oU% , etc., of equations C/2e-4)are carried along in the theoretical development rather thanbeing neglected, their effect would be to act in the direction
of making the £q curves still broader and the interrelated-
ness of winds at all levels still greater. Since the
curves are likely to be too broad already (because of a tooliteral application of the thermal wind constraint?), it seemsjudicious to neglect the surface correlation terms until
calculations of vertical correlations can be computed fromrawinsonde data and compared with the correlations of Figures
10-12.

The actual choices of h and will have to be basedon calculations of deviational temperature autocorrelations
for real data. It may be necessary or desirable to usedifferent values of these coefficients at different latitudesor in different regions. It may also prove to be better to
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£4'use an empirically determined function for 1-J rather than
one derived from .t through the thermal wind relation.

IV. Modification for the Tropics

In equatorial latitudes, the thermal wind relation cannot
be used to relate temperatures and winds, thus the multivariate
analysis must be gradually decoupled as the equator is
approached. Probably the best way to do this is to replace
equation C2Y with

-7T FO) U + P-A Vk 2kkj (34)
3 i =, ~~~~~~k=,

where F(s) is a function of latitude which is near unity at
the higher latitudes but decreases to zero at the equator
(or perhaps at ± 100, say). Similarly, if the winds are
analyzed multivariately at the higher latitudes,

k1-~=z - +X6kYk (35)

and similarly for . Actually, the inclusion of temperature
data in the wind analysis near the equator would cause far
more serious errors than would the inclusion of wind data in
the temperature analysis. In the latter case, the thermal
wind relation would force these winds to have very low weights
in determining the analyzed temperature anyway, unless the
wind speeds were extremely high.

The actual choice of F(#) will have to be determined
experimentally on the basis of real data analyses. If only
the temperatures, and not the winds, are analyzed multivariately,
it may not be necessary to use such a function for decoupling
since the winds would have minimal influence on the analyzed
temperatures near the equator anyway.

V. Modification for Errors in Observations

The discussion thus far has assumed observations with
no errors. In practice, it is important to allow for the
observational errors in a systematic way. Other factors
being equal, an observation with a large probable error
should obviously receive a smaller weight than an observation
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with a small probable error. If the error of each observation
were known exactly, it would be a simple matter to "correct"
the observations, but, for most meteorological observations,
only an estimate of the statistical error variance is in fact
known. Thus we know that the standard deviation of radiosonde
temperature errors is approximately 1°C, whereas that of
satellite VTPR temperature errors is approximately twice as
great in the troposphere.

In order to show how these differing errors can be
accounted for in the analysis scheme, let us return to
equations C5) and reconsider the meaning of the covariances
there when observational error is included. Let , be
a typical autocovariance where f~ and f are either both
deviational temperature observations or deViational wind
component observations, and the hats indicate that the
observations are to some degree erroneous. Then

B y L f( a + A ; ) o f j + £ J ) = T ( + ( £ . t g i + & , £ . ( 3 6 )
j~~~~~~~~~~ j

where £z and E are the statistical error standard deviations
of observationsJ J and f, . The first term, if. , on
the right-hand side of (3) is the '"true" covariance of obser-
vations f and which we have been concerned with previously.

For most kinds of observations, the observational error
at one location is considered to be independent of the obser-
vational error at another location. Also, the errors are not
considered to be correlated in any way with the "true" values.
Then (36) reduces to

._.f. =f~~~' + ... - ..6(37a)

ft ~~f F f )=(37b)

Here 7 is the 'Inflated" variance, , the "true" variance,
and Uthe error variance of observation , . This result
likely applies to all conventional types of observations and
probably also to visually determined satellite winds.
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The exceptions to the above are satellite-derived temper-
ature observations. There are qualitative evidence and physical
reasons for believing that the errors of these temperature
observations are spatially correlated along an orbital pass.
Thus, for satellite temperatures, (36) becomes

A A 

lf = fj + £ .e (38)

for all i and J where both observations are satellite tempera-
tures. Where only one observation is a satellite temperature
and the other is a conventional temperature, the errors are
uncorrelated and (37a, b) apply.

Actually, there is reason to believe that the covariances
Aft' are not identically zero when j refers to a satellite

temperature observation, but in fact are small negative
quantities. This is because the temperatures as measured by
satellite consistently tend to give a smoother analysis, with
less detail and less pronounced extrema, as compared to "truth."
See Bergman and Bonner (1974) for observational evidence of
this. However, aside from the difficulty of correctly evaluating
the covariance, the version of "truth" appropriate
for a global numerical model is in fact a smoothed version of
reality. Since the magnitude of the 6j'i covariance is in
all probability small compared to the satellite spatial error
covariance 4 , there are at present no plans to consider
it in the treatment of the errors.

Thus far we have discussed the autocovariances of
equations (5) only. No inflation of the cross-covariances

til , etc., due to observational errors occurs if the
reasonable assumption is made that errors of temperature and wind
observations of any type are uncorrelated with each other.
The same is true of the cross-covariances u. v. and V.U
provided that the errors in the wind observations are strictly
random in nature with, for example, no tendency to overestimate
the u-component while simultaneously underestimating the
v-component.

The additional error terms in the covariances of (37)
and (38) may be normalized in the same way as the "true"
covariances themselves by means of definitions (7). Thus
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t 6(((TV (39)
t.2- V.

are added to the correlation coefficients pe , f," and
p vv (where i = j). These normalized error variances inflate

the magnitude of the diagonal terms in the matrix of correlation
coefficients used to solve equations (6) for the a', b", and c
weights.

Additionally, off-diagonal correlations between satellite
temperature measurements will be inflated by the amounts

ttt (40)ta
U t
7~.OT a- ,. ,/ (40)

where 0. and O- are the standard deviations of the
satellite observational errors (probably identical in most
cases), and .tCxe ' ,it ; xi I ; :J- ) is a
functional co'elation coefficient whose magnitude depends
upon the separation of the two observations. The functional
form of this correlation will have to be determined from
satellite observational data. As a first trial, it is planned
to set

7.D. - (41)

i.e., the correlation of the satellite temperature errors is
assumed to be the same as the correlation of the "true"
deviational temperatures themselves.

The inclusion of these error terms in the system of
equations (6) will have the effect of reducing the weight
given to an observation in proportion to the magnitude of
observational error variance, as shown by Alaka and Elvander
(1972). Additionally, the weight of satellite temperature
observations whose errors are highly correlated spatially
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(have an 1.o approaching unity) will be correspondingly
reduced. An indication of the effect of this spatial
correlation in reducing the information value of satellite
temperature observations in temperature analysis has been
shown by Bergman (1974).

VI. The Guess Field

It is recommended that the values of meteorological
parameters forecast by the dynamic model at grid points be
blended with climatological values according to the weighted
formula

c-- c (42)

where is the forecast temperature, 71 is the climatological
mean temperature (perhaps stratified by season), ' is the
forecast error variance, and o-Q is he climatological
variance. The resulting guess value T- would be an improvement
over the forecast in the tropical regions where M ( 
at least in a statistical sense, although highly unusual
meteorological situations might be adversely affected by this
procedure. In any event, the guess field would be biased
conservatively towards climatology and would still be subject
to correction by the available observations in the analysis
procedure.

VII. Bogus Data

No mention has been made thus far of manually entered
"observations"' based on subjective synoptic reasoning. As
far as the analysis scheme is concerned, bogus data would be
treated like any other data. A suitable standard error would
have to be assigned the bogus data. This will likely be
determined on the basis of experimentation with different
assigned values for the error.

VIII. Data Error Check

The details of an error checking scheme for eliminating
obviously erroneous data have not yet been worked out, but
an initial pass of the analysis scheme for the local observa-
tion locations with the local observations themselves removed
may be used as a comparative field check on observations.
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IX. Summary

A multivariate analysis scheme for the simultaneous
analysis of temperature and wind fields has been developed,
This analysis method uses the concept of optimum interpolation
as developed by Gandin, and uses the thermal wind relation
to determine the functional form of all other correlations
once the temperature autocorrelation has been specified.
The analysis scheme is three-dimensional and can analyze
for any location in the atmosphere using observations in
a neighborhood volume of space. The necessary modifications
of the scheme for the tropics, for inclusion of observational
errors, and for "bogus" data are considered,

Several simplifying assumptions and approximations are
made in the course of the development. While these necessarily
reduce the degree of optimization of the resulting analysis
system, it must be remembered that an analysis system must
not be so complex that it is unworkable in an operational
time framework. It is anticipated, moreover, that some
refinementsmay be added to the analysis scheme once the basic
form of it is working, and that modifications of an empirical
type will be introduced in order to produce improved analysis
results. Multivariate analysis systems in use at NCAR and in
Canada are producing high quality analyses with the same kinds
of simplifying assumptions that are proposed here.

The ultimate test of the analysis scheme will be the
quality of the analyses that it produces compared to analyses
produced by other methods. The relative quality of these
analyses will have to be decided on the basis of numerical-
model forecasts which use the analysis as initial data fields.

Finally, it should be remembered that even the most
ingeniously devised analysis scheme will be limited by the
density and quality of observational data. The most carefully
optimized analysis will still be of little help in producing
good forecasts in areas where the observations are sparse
or are of poor quality.
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APPENDIX

The following proofs of covariance derivative relation-
ships are based on proofs provided to the author by Dr. T. W.
Schlatter of NCAR,
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Proofs for other relations involving second-order partial
derivatives are similar,
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